Maximum Subarray


Question

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray [4,-1,2,1] has the largest sum = 6.

Solution

隔了三個多月,只剩下依稀的印象。要記得一件事情,看到 subarray 就要反射的想到 prefixSum (前綴和)。這題的核心概念在,num[i - j] 這個範圍的和,就等於 prefixSum[j] - prefixSum[i - 1]。

在跑 for loop 時,prefix 持續在記錄當前的和,那 max 就等於 prefix - min 跟當前 max 的比較。同時,別忘了更新最小值:min = Math.min(min, prefix),這樣就可以求得 O(n) 的解法。

    public int maxSubArray(int[] nums) {
        // 看到 subarray,想到 prefixSum
        if (nums.length == 0 || nums == null) {
            return 0;
        }

        int max = Integer.MIN_VALUE, prefixSum = 0, min = 0;
        for (int i = 0; i < nums.length; i++) {
            prefixSum += nums[i];
            max = Math.max(max, prefixSum - min);
            min = Math.min(min, prefixSum);
        }
        return max;
    }

另一種解法是用 DP 解,這邊可以定義全局最優跟局部最優:

local[i] 代表局部最優,表示包含第 i 個元素所能找到的最大值 global[i] 代表全局最優,表示全局 i 的元素中所能找到的最大值

local[i] = Math.max(nums[i], local[i - 1] + nums[i]); global[i] = Math.max(global[i - 1], local[i]);

return global[(i - 1) % 2];

    if (nums.length == 0 || nums == null) {
            return 0;
        }

        int[] local = new int[2];
        int[] global = new int[2];
        local[0] = nums[0];
        global[0] = nums[0];
        for (int i = 1; i < nums.length; i++) {
            local[i % 2] = Math.max(local[(i - 1) % 2] + nums[i], nums[i]);
            global[i % 2] = Math.max(global[(i - 1) % 2], local[i % 2]);
        }
        return global[(nums.length - 1) % 2];

results matching ""

    No results matching ""